Achievement Standard: 91372_2.45version 3
Construct a plan for an advanced computer program for a specified task

Achievement Standard: 91373_2.46version 3
Construct an advanced computer program for a specified task

Programming Assessments
STUDENT EVIDENCE
DOCUMENT
[image: https://qph.ec.quoracdn.net/main-qimg-16fbc427588450bcbfbb8f744b844583]
STUDENT NAME: TJ Sutton | grade here in red

Submission Date: xx / xx / 2019
Submission Number: x
Task

You have been asked to write a plan for a program which can be used to compare the prices of various products based on their weight, volume and price.
Rather than writing down the price and weight or volume of each product and then calculating the ‘unit price’ for each item, you have decided to write a computer program to do all the hard work.
You will be assessed on…
How successfully your plan meets the requirements of the brief
How clearly you have described your plan.
The efficiency of your plan (eg: using functions to minimise repeated code, using variables and constants effectively and having a comprehensive test plan).

This is an individual task. You have 4 lessons (1 week) of time to complete it.

Basic Specifications

· On start-up, your program should ask the user how much money they have on-hand. You should decide on a suitable minimum amount (eg: $10.00)

· Your program should allow users to enter the details for multiple products that are being compared. For each product, the program should ask the user for…
· The product name
· The mass / volume of the product
· The price

· If users enter ‘XXX’ (or a suitable code), the program should then display
· The Item name and Unit price for each item being compared
· The average unit price
· The cheapest item
· The most expensive item
· A recommendation on which item should be purchased given the amount of money that the user has on-hand. Depending on how your program deals with prices which are more than what a user has to spend, this might not always be the product with the cheapest unit price.

· The program should then give users the option of starting over or quitting.

	Hint: You can work out the Unit price by dividing the cost of an item by its volume / weight. You are allowed to use a spreadsheet to develop test data for expected values.

	Things to Consider
Items can be measured in g / kg or mL / L. Your program should ensure that users enter sensible data. There are a number of ways of dealing with this issue. Below are two possible options…
· You could take a ‘no frills’ approach and tell users to enter all data to the nearest g / mL (or kg / L)
· You could allow users to choose the unit and then set appropriate limits (Think: would it make sense to allow users to enter a weight of 1000 kg? Would it make sense to allow 1000 g?)
Will your program allow users to enter prices for goods where the amount is more than the person has to spend? Will you give users a choice so they can see which product is the best value (even if they can’t afford to buy the product at the current time). Please make a decision and then justify your choice (you could do this in the ‘steps’ part of your planning or as a comment at the top of your page).

Possible Output Example
Below is some example test data. The test data is shaded in blue, the kg and unit cost for each item have been worked out using correct formulae. Arguably, the ‘g’ column is not required as the Unit Cost is in $ per kg. 							
[image:]
The program should recommend that the user buy Kit Kat as they only have $2.00. Whilst Whittakers is the best value, our user does not have enough money to buy the 200g slab.

Planning Specifications : AS 91372
Develop a plan which will allow you to create a price comparison tool. Your plan must include:
•	The variables that will be used and their data type
•	A clear description of how the program will work – this can be presented as a series of
 written steps and / or as a flowchart
•	Reference to at least one indexed data structure (eg: a list)
•	Functions with well-defined purposes. For each function, you should include a
mini-flowchart or a series of steps showing what the function does
•	A test plan which includes expected. boundary and exceptional (unexpected) input test cases
•	A program based on your plan should be robust
•	Your plan should not involve unnecessary duplication.

Task 1. Write the Pseudo Code for the program
Think through the process of what the program is asking, what will be needed before and during the running of it. Write out the list of steps. Don’t worry if you need to refine this one or twice.

Task 2. Draw a flowchart
As with Task 1, there are no marks for this, but a clearly detailed flowchart will assist with your coding.

Task 3. Identify the input information
Use the blank planning table – Variables. What information will the user have to enter?
Fill in the table, with the scope, data type and a brief description of each variable.
Add extra rows to the table if necessary.

Task 4. Identify the output information
What information will the program need to print out?
Add the required ‘outputs’ to your variable table.

Task 5. Identify any constants if necessary and identify indexed data structures
What data will need to be stored before the program can run?

Task 6. Determine what calculations are necessary
What data will need to be stored before the program can run?

Task 7. Develop a modular structure for your program
In your pseudocode or flowchart, include any sub-procedures/functions where required. Describe the modules or functions in terms of input and/or output where required.

Task 8. Create a set of input cases for testing the program
Create various test plans so that once the program has been created you can…
· Test that your program works for expected inputs
· Test that your program completes the calculations correctly
· Test that your program loops as expected

Task 9. Create a comprehensive set of expected, boundary and invalid input cases for testing the program (M and E)
Add to your testing plan and test data table to include boundary and invalid data input cases.

Add any additional statements to your modules where necessary.

Task 10. Refine the plan (M and E)
Make any additions to the plan so far to ensure that parameters for the modules are well chosen, each module will have a well-defined purpose within the context of the task, interaction between the modules is minimised, modules will be re-used rather than duplicated, procedural structure within each module will be efficient.

Task 11. Code your program
Refer to your flowchart and planning and code the program to answer the needs of the assessment. Refer to the marking sheet to ensure you answer required assessment criteria for each grade level.

==

Programming Specifications : AS 91373

Task 1. Review your plan
Read through your plan for the task.

Task 2. Create the program
1. Create a folder called ‘yourFullName_Python Level 2’
2. Create a python file called ‘priceCompare_numberX.py’
3. The number X is the version you are up to – save one each day.
4. Comment the code with:
a. Your name
b. Date
c. Purpose
d. Version
e. Any notes

Task 3. Test your code
Test as you go. Once fully completed, use your testing tables to test inputs and boundaries.

Task 4. Update the testing and boundary tables
Paste in screenshot or make comment in the ‘Actual Outcome’ section of your testing tables.
If you make errors, then document this in the table, making comment on what happened. Then, when you get it correct, document that, commenting on what you did.

Part of the assessment is you making repeated attempts to correct errors and the teacher cannot see this unless you document your attempts as you go.

Task 5. Refine the program (M and E)
Make any additions to the program so far to ensure that you have used variables, constants, and derived values effectively so that your program is flexible and robust. Ensure that you have set out the program code concisely and documented the program with comments that explain and justify decisions about code behaviour. Ensure that the procedural structure within each module will be efficient.
EVIDENCE BEGINS HERE

Task 1. Write the Pseudo Code for the program
1.

Task 2. Draw a flowchart

[bookmark: _GoBack]

Task 3, 4, 5 Identify the input / output / process / constants information
Must test every input variable and with at least two data inputs

	Input / Output / Process / Constants
	Variable Name
	Scope / Data-type
	What this Variable is for

	input
	cash_on_hand
	float
	Used to record the cash the user has available to purchase products with

	Input
	new_product
	float
	Variable that records the new product the user is adding

	Input
	new_mass
	float
	Variable that records the mass for the new product the user is adding

	Input
	new_price
	float
	Variable that records the price for the new product the user is adding

	Input
	user_input
	integer
	Variable that records user input for the menu.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Task 6. Determine what calculations are necessary

Task 7. Develop a modular structure for your program

Task 8. Create a set of input cases for testing the program

VALID TESTING
Purpose: To test all variables work as expected. You need TWO Valid tests per input.
	Test No.
	Which input is being rested
	Data entered to test the input
	Reason for test
	Expected outcome
	Actual outcome
	Pass / Fail

	1
	
	
	
	
	
	

	2
	
	
	
	
	
	

	
	
	
	
	
	
	

	3
	
	
	
	
	
	

	4
	
	
	
	
	
	

	5
	
	
	
	
	
	

	6
	
	
	
	
	
	

Task 9a. Create a comprehensive set of expected, boundary cases for testing the program (M and E)

BOUNDARY TESTING
Purpose: To test the limits of the code. You need TWO tests per boundary.
	Test No.
	Which Boundary is being rested
	Data entered to test the input
	Reason for test
	Expected outcome
	Actual outcome
	Pass / Fail

	1
	
	
	
	
	
	

	2
	
	
	
	
	
	

	
	
	
	
	
	
	

	3
	
	
	
	
	
	

	4
	
	
	
	
	
	

	5
	
	
	
	
	
	

	6
	
	
	
	
	
	

	
	
	
	
	
	
	

Task 9b. Create a comprehensive set of invalid input cases for testing the program (M and E)

INVALID TESTING
Purpose: To make sure that invalid inputs will not be allowed in the code. You need TWO invalids per input.

	Test No.
	Which input is being rested
	Data entered to test the input
	Reason for test
	Expected outcome
	Actual outcome
	Pass / Fail

	1
	
	
	
	
	
	

	2
	
	
	
	
	
	

	
	
	
	
	
	
	

	3
	
	
	
	
	
	

	4
	
	
	
	
	
	

	5
	
	
	
	
	
	

	6
	
	
	
	
	
	

	
	
	
	
	
	
	

TASK CHECKLIST – 91372 - Planning
	
	Assessment Criteria
	
	Evidence

	Achieved
	The plan meets the requirements of the specifications.
	
	

	
	The plan uses sensible variable names.
	
	Input/output/ tables

	
	The plan has identified all the variable types.
	
	

	
	The plan has identified the required inputs and outputs
	
	

	
	The plan specifies where indexed structures will be used
	
	Steps / variables

	
	The plan has sequence (steps in order).
	
	Steps

	
	The plan has selection (choice of actions).
	
	

	
	The plan has appropriate calculations / formulae
	
	

	
	The plan has iteration (a loop).
	
	

	
	The plan includes a test plan which
Tests that user input is valid
Tests that the calculations are correct
Tests that the program loops correctly
	
	Test plan

	Merit
	Work has been done independently.
	
	Teacher observation

	
	The plan will lead to a program which is structured with a suitable introduction, middle and end.
	
	Steps

	
	The plan has well-chosen functions, actions, conditions and control structures (least amount of coding as possible).
	
	

	
	The plan is flexible and robust
	
	

	
	A program based on the plan will work for unexpected data.
	
	

	
	The plan includes testing expected and boundary cases
	
	 testing table

	Excellence
	Modules have been used resulting in a well-structured, logical decomposition of the task.
	
	testing table

	
	Variables, constants and derived values have been specified so that the plan is flexible and robust with no unnecessary duplication.
	
	Steps

	
	The plan includes testing expected, boundary and exceptional cases
	
	Testing tables

TASK CHECKLIST – 91373 - Implement (Coding)

	
	Assessment Criteria
	
	Evidence

	Achieved
	Program uses sensible variable names
	
	Program code

	
	Program has input and output.
	
	

	
	Program has at least one list
	
	

	
	Program has procedures
	
	

	
	Program has a modular structure
	
	

	
	The plan has sequence (steps in order).
	
	See the Planning Section flowchart or Pseudo Code

	
	The plan has selection (choice of actions).
	
	

	
	The plan has appropriate calculations / formulae
	
	

	
	The plan has iteration (a loop).
	
	

	
	Program code is set out clearly with suitable comments
	
	

	
	Testing and debugging for each version of the code has been documented
	
	Evidence template

	
	Program works correctly on expected input cases
	
	

	
	Code has been saved
	
	

	
	Printout of final code has been provided
	
	Code print out

	Merit
	Program was developed independently.
	
	Program code

	
	Variables and scope have been well chosen
	
	

	
	Functions and parameters have been well chosen
	
	

	
	Comments accurately describe code behaviour
	
	

	
	Program works correctly on expected and boundary input cases.
	
	Evidence template

	Excellence
	Modules are well structured and logical.
· Each module has a clear, well defined purpose
· Interaction between modules is minimised
· Modules are re-used rather than duplicated
· The procedural structure of each module is efficient
	
	Program code

	
	Variables, constants and derived values ensure that the program is flexible and robust.
	
	

	
	The program has been comprehensively tested and debugged
	
	

	
	Student is organised. Time has been used efficiently
	
	

	
	Program works correctly on expected, boundary and exceptional input cases.
	
	Evidence template

Program | Assessment schedule: Digital Technologies 91372

	Evidence/Judgements for Achievement
	Evidence/Judgements for Achievement with Merit
	Evidence/Judgments for Achievement with Excellence

	The student has constructed a plan for an advanced computer programme
	The student has skilfully constructed a plan for an advanced computer programme
	The student has efficiently constructed a plan for an advanced computer

	The student has constructed a plan for an advanced computer program with some teacher guidance.
· A main module has been planned with calls to other modules that have a procedural structure for a sub task.
· The modules could include parameters where needed
	The student has independently constructed a plan for an advanced computer programme.

See bullet points for achieved
	The student has constructed a plan for an efficient programme. The task has been broken down into several logical modules.
· A main module has been planned with calls to several other modules that have a distinct purpose.
For example, the program includes functions to
· Validate numeric data (ie: check that weight, volume and price are numbers above zero).
· Ensure the item name is not left blank
· Convert from g to kg / mL to L
· There is little code duplication between modules.

	The plan specifies variables, their scopes and data types
Some examples may include:
· username, global, string
· budget, global, float
· mass_volume, global, float
· product_name, global, string
· product_unit, global, string
· product_amount, global float
· price, global float

· valid, local within data validation functions, boolean
· response, local within data validation functions
	The plan specifies well-chosen scopes for the variables

See achieved for possible variable name examples. Variable names will be sensible and all in lowercase.
	The plan specifies variables, constants, and derived values effectively so as to maximise the flexibility and robustness of the plan

See achieved for possible variable name examples. Variable names will be sensible and all in lowercase. An excellence plan should have a relatively high number of local variables as functions should be used to minimise code repetition and maximise flexibility.

	The plan specifies an indexed data structure
An indexed structure could be a list to hold each item’s name, weight, cost and unit cost.
	The plan specifies a well-chosen indexed data structure
An indexed structure could be a list to hold each item’s name, weight, cost and unit cost.
	The plan specifies multiple indexed structures / a nested list if appropriate
The plan includes a *temporary* ‘Item’ list which is used to store information about each item. Each item is then appended to a larger ‘Entries’ list which can be sorted by the cheapest item.

	The plan specifies a modular structure for the program, including details of the procedural structures of the modules

The task has been broken down into a main module and at least one other module. The main module calls the other module that has a procedural structure for a sub task.

For example: The main module asks for the username and uses a ‘not_blank’ function to check that the name is not left blank. This function is also used to check that the name of items being compared is not left blank.

	The plan specifies well-chosen parameters for the modules

Student has accurately planned the parameters that will be passed into their modules:

For example:
· The ‘not_blank’ function takes in a question as a parameter and returns a response string.
· The ‘num_check’ function takes in a question, a minimum value and a maximum value and returns a valid float
	The plan specifies modules (including their procedural structures) that constitute a well-structured logical decomposition of the task

Students has minimised code repetition in their plan. The functions that they have planned to use might include:

· A not_blank function for checking that user name and item name are not blank
· A yes / no function for validating responses to yes / no questions
· A number checking function
· A conversion function (to convert g to kg / mL to L)

	The plan specifies a set of expected input cases for testing the program

For example:
Username: Joe Bloggs
Budget: $10.00

Items as follows:
Whitakers Dark Chocolate, 250g, $3.50
Cadbury Dark Chocolate, 200g, $2.99
Kit kat, 50g, $1.50

	The plan specifies a set of expected and boundary input cases for testing the program

See achieved for expected case

Should have planned cases for boundary values
Budget: $1.99, $2.00
Cost of $0.00, $0.01, $100.00, $100.01
Weight / volume of: 0, 1g, 20kg, 20.1kg

	The plan specifies a comprehensive set of expected, boundary and exceptional input cases for testing the program

See achieved / merit and…

Should have invalid inputs
Name / item name <blank>
Cost: -$1.00
Weight: -1kg, “hello world”

	Plan | Assessment schedule: Digital Technologies 91373
	Evidence/Judgements for Achievement
	Evidence/Judgements for Achievement with Merit
	Evidence/Judgements for Achievement with Excellence

	Construct an advanced computer program for a specified task.
	Skilfully construct an advanced computer program for a specified task.
	Efficiently construct an advanced computer program for a specified task.

	With some guidance, the student has:
· implemented a plan for an advanced program in a suitable programming language

All the specifications outlined in the task have been met.
· The program asks for the users’ name and budget
· It asks if the item is being sold by weight or volume
· It prompts the user to enter the name, weight and cost of items until a suitable exit code (such as XXX) is entered
· It checks that the username is not blank
· It checks that the weight / volume of the item is less between 0.1 kg / L and 20kg / 20L
· It checks that the budget is $2.00 or more
· It checks that the cost of each item is between 0 and $100
· It correctly calculates and displays the unit price for each item
· It correctly calculates and displays the cheapest item, the most expensive item and the average unit cost for the items being compared
· It allows the user to make multiple comparisons (ie: it loops if required)
	The student has:
· independently implemented a plan for an advanced program in a suitable programming language that uses well-chosen scopes for variables, and well-chosen parameters for modules

See achieved and…

· The program should ask the user for the units for each item and convert to kg / L if necessary
· The program recommends the cheapest item (by unit cost) provided that the price is not more than the budget price

Eg: given the items below and a budget of $2.00, the program should recommend that the user purchase ‘Kit Kat’ as they don’t have enough money to buy the Whittakers slab (even though it is cheaper weight for weight).

[image:]

	The student has:
· constructed an advanced program where the modules (including their procedural structures) constitute a well-structured logical decomposition of the task
· used variables, constants, and derived values effectively so as to increase the flexibility and robustness of the program

See Merit

In addition to meeting the task specifications, the code should be efficient and robust.

For example, one function is used to validate all numeric data. The number checking function might have the following parameters:
· question
· low number (lowest allowed value)
· high (highest allowed value)
· error (error message to be displayed if invalid data is entered)

	· set out the program code clearly and documented the program with comments

· The student has written well formatted code with easy to read comments.
· Functions generally have comments at the start which clearly state their purpose
	· documented the program with variable and module names and comments that accurately describe code function and behaviour

 For example the comment above the number checking function might look like this….

Checks that input is a number between a minimum and maximum possible value
	· set out the program code concisely and documented the program with comments that explain and justify decisions

For example the comment above start of the while loop for repeating the code might read

Uses <enter> to loop or any key to quit (this makes it impossible for user to enter an invalid response and is faster than having to type ‘yes’ / ‘no’).

	· tested and debugged the program to ensure it works on a sample of expected input cases.

For example shows expected and actual output for the following:
:
Username: Joe Bloggs
Budget: $10.00

Items as follows:
Whitakers Dark Chocolate, 250g, $3.50
Cadbury Dark Chocolate, 200g, $2.99
Kit kat, 50g, $1.50

	· tested and debugged the program in an organised way to ensure it works on inputs that include both expected and boundary cases.

As for achieved and shows expected and actual output for the following boundary cases:

Budget: $1.99, $2.00
Cost of $0.00, $0.01, $100.00, $100.01
Weight / volume of: 0, 0.1kg (ie: 100g), 20kg, 20.1kg
	· comprehensively tested and debugged the program in an organised and time‑effective way to ensure the program is correct on expected, boundary and invalid inputs.

As for merit and shows expected and actual output for the following boundary cases:

Should have invalid inputs
Name / item name <blank>
Cost: -$1.00 <ie: ‘$’ included as a string>
Weight: -1kg, <ie: ‘kg’ included as a string>
“hello world”

image3.png
item g kg Cost UnitCost
WhitakersSlab 200 0.2 $ 299 $ 14.95
CadburyBlock 220 022 $ 3.50 $ 1591
Kit Kat Bar 00 01 $ 199 $ 19.90

image1.png
Symbal

Function

Process

Indicates any type of internal
operation inside the Processor
or Memory

input/output

Tsed for any Input / Output

(UO) operation. Indicates that

the computer is to obtain data
or output results

Used to ask a question that can
be answered in a binary
format (Yes/No, True/False)

“Allows the flowchart fo be

drawn without intersecting

lines or without a reverse
flow.

Predefined Process

Used to invoke a subroutine or
an Interrupt program.

Terminal

Tndicates the starting or ending
of the program, process, or
interrupt program

Flow Lines

Shows direction of flow.

image2.png
Item g kg Cost UnitCost
WhitakersSlab 200 0.2 $ 299 $ 14.95
CadburyBlock 220 022 $ 3.50 $ 1591
Kit Kat Bar 00 01 $ 199 $ 19.90

Budget: $2.00

